
Solutions to Question Sheet 2, Limits II. v1. 2019-20

Limits not existing

In the next two questions we look at examples of functions that do not have
a limit at a point.

1. Recall the unproved result from lectures that if you can find two se-
quences

{xn}n≥1 , xn 6= a for all n ≥ 1, limn→∞ xn = a and

{yn}n≥1 , yn 6= a for all n ≥ 1, limn→∞ yn = a

for which limn→∞ f(xn) 6= limn→∞ f(yn) then limx→a f(x) does not

exist.

Use this to prove that

i) For f1 : R→ R defined by

f1(x) =

{
1 if x is rational

0 if x is irrational,

the limit limx→0 f1(x) does not exist.

Hint find a sequence xn → 0 for which f1 (xn) = 1 for all n ≥ 1 and a
sequence yn → 0 with f1 (yn) = 0 for all n ≥ 1.

ii) For f2 : R\ {0} → R defined by

f2(x) = sin
(π
x

)
,

the limit limx→0 f2(x) does not exist.

Hint find a sequence xn → 0 for which sin (π/xn) = 1 for all n ≥ 1
and a sequence yn → 0 with sin (π/yn) = −1 for all n ≥ 1.

Solution i) First we need a sequence of non-zero rational numbers
tending to 0. Let

xn =
1

n
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for all n ≥ 1. Then limn→∞ xn = 0. Since each xn is rational we have

f1(xn) = 1 for all n ≥ 1 in which case limn→∞ f1(xn) = 1.

Next we need a sequence of non-zero irrational numbers tending to 0.
Let

yn =

√
2

n

for all n ≥ 1. Then limn→∞ yn = 0. This time each yn is irrational so

f1(yn) = 0 for all n ≥ 1 in which case limn→∞ f1(yn) = 0.

By the result quoted in the question we deduce that limx→0 f1(x) does
not exist.

ii) We know that

sin
(

2πn+
π

2

)
= 1

for all integers n, so choose xn such that

π

xn
= 2πn+

π

2
, i.e. xn =

2

4n+ 1
.

for all n ≥ 1. Then limn→∞ xn = 0 while f2(xn) = 1 for all n ≥ 1 so

limn→∞ f2(xn) = 1.

We also know that

sin

(
2πn+

3π

2

)
= −1

for all integers n, so choose yn such that

π

yn
= 2πn+

3π

2
, i.e. yn =

2

4n+ 3
.

for all n ≥ 1. Then limn→∞ yn = 0 while f2(yn) = −1 for all n ≥ 1 so

limn→∞ f2(yn) = −1.

Thus again by the result quoted in the question we deduce that limx→0 f2 (x)
does not exist.
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2. i) Show by means of an example that limx→a {f(x) + g(x)} may exist
even though neither limx→a f(x) or limx→a g(x) exist.

ii) Do the same for limx→a f(x) g(x).

Hint: Construct f and g from a function in the previous question or
a similar one seen in the notes.

Solution The hint suggests using a function that fails to have a limit
at a point. From the notes we have that h (x) = x/ |x| x 6= 0, with
a = 0, is such a function. (Recall, the left hand limit does not equal
the right hand limit at 0).

i) For example, with a = 0, try

f(x) =
x

|x|
and g(x) = − x

|x|

for x 6= 0.

ii) For example, with a = 0, try

f(x) =
x

|x|
and g(x) =

x

|x|

for x 6= 0. In this case

lim
x→0

f(x) g (x) = lim
x→0

x2

|x|2
= lim

x→0
1 = 1

exists.

One-sided limits

In the next two questions we examine a limit at a point by examining the
two one-sided limits at that point.

3. Let

F (x) =
x2 − 1

|x− 1|
.

i) For what x is this well-defined?
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Hint Recall that |y| = y if y ≥ 0 and = −y if y < 0.

ii) Find limx→1+ F (x)

iii) Find limx→1− F (x).

iv) Does limx→1 F (x) exist?

v) Sketch the graph of F (x) , x ∈ R.

Solution i) F (x) is well-defined for x 6= 1.

ii) If x > 1 then x− 1 > 0 and so |x− 1| = x− 1 and thus

F (x) =
x2 − 1

x− 1
= x+ 1.

Hence limx→1+ F (x) = 2.

iii) If x < 1 then x− 1 < 0 and so |x− 1| = − (x− 1) and thus

F (x) =
x2 − 1

− (x− 1)
= − (x+ 1) .

Hence limx→1− F (x) = −2.

iv) The one-sided limits are not equal and thus limx→1 F (x) does not
exist.

v) The graph of F :

2

−2

1

x

y
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4. Sketch the graph of

f(x) =


8− x2, x < 2

3, x = 2

x2 − 2 x > 2.

Use the ε - δ definition to evaluate the following one-sided limits.

i) lim
x→2−

f(x) and ii) lim
x→2+

f(x) .

Does limx→2 f(x) exist?

Solution The graph of f is

2

3

4

2

x

y

i) Left hand limit : From the graph we might guess that limx→2− f(x) =
4.

For x < 2 we have

|f(x)− 4| =
∣∣(8− x2)− 4

∣∣ =
∣∣4− x2∣∣ = |x− 2| |x+ 2| . (1)

Let ε > 0 be given, choose δ = min (1, ε/4) and assume 2− δ < x < 2.

The bound δ ≤ 1 means that 1 < x < 2, and so 3 < x + 2 < 4. Thus
|x+ 2| < 4 and (1) becomes |f(x)− 4| < 4 |x− 2|.

The other bound δ ≤ ε/4 then means that

|f(x)− 4| < 4 |x− 2| < 4δ ≤ 4
(ε

4

)
= ε.
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Thus we have verified the ε - δ definition of the one-sided limit limx→2− f(x) =
4.

ii) Right hand limit : From the graph we might guess that limx→2+ f(x) =
2.

For x > 2 we have f (x) = x2 − 2 and so

|f(x)− 2| =
∣∣x2 − 4

∣∣ = |x− 2| |x+ 2| . (2)

Let ε > 0 be given, choose δ = min (1, ε/5) and assume 2 < x < 2 + δ.

The bound δ ≤ 1 means that 2 < x < 3, and so 4 < x + 2 < 5. Thus
|x+ 2| < 5 and (2) becomes |f(x)− 4| < 5 |x− 2|.

The other bound, δ ≤ ε/5, means that

|f(x)− 2| < 5 |x− 2| < 5δ ≤ 5
(ε

5

)
= ε.

Thus we have verified the ε - δ definition of the one-sided limit limx→2+ f(x) =
2.

Since the one-sided limits do not agree we conclude that limx→2 f(x)
does not exist.

Limits at Infinity

In the next five questions we look at limits as x→ +∞ and x→ −∞.

5. Verify the ε -X definition of

lim
x→+∞

3x+ 3

x− 2
= 3.

Solution Rough work Consider

|f(x)− L| =
∣∣∣∣3x+ 3

x− 2
− 3

∣∣∣∣ =
9

|x− 2|
.
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If x > 2 then |x− 2| = x− 2 and we demand that

9

x− 2
< ε, i.e. x > 2 +

9

ε
.

If x satisfies this then necessarily x > 2 as required for the previous
step. End of Rough work

Proof Let ε > 0 be given, choose X = 2 + 9/ε and assume x > X. For
such x we have

|f(x)− L| =

∣∣∣∣3x+ 3

x− 2
− 3

∣∣∣∣ =
9

|x− 2|

=
9

x− 2
since x > X > 2

<
9

X − 2
since x > X

=
9

(9/ε)
since X − 2 = 9/ε

= ε.

Therefore we have verified the ε -X definition of

lim
x→+∞

3x+ 3

x− 2
= 3.

6. Verify the ε -X definition of

lim
x→−∞

2x− 2

x+ 2
= 2.

Solution Rough Work. Consider

|f(x)− L| =
∣∣∣∣2x− 2

x+ 2
− 2

∣∣∣∣ =
6

|x+ 2|
.

In the definition of limit as x → −∞ we need to find a negative X.
First demand that x < −2 so x+ 2 < 0 and |x+ 2| = − (x+ 2). Then∣∣∣∣2x− 2

x+ 2
− 2

∣∣∣∣ = − 6

x+ 2
.
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Next demand this is < ε, that is

− 6

x+ 2
< ε.

This can rearranged as x < −2−6/ε. If x satisfies this then necessarily
x < −2 as previously demanded.
textitEnd of Rough work.

Proof Let ε > 0 be given. Choose X = −2 − 6/ε. Assume x < X.
First x < X < −2 means x + 2 is negative so |x+ 2| = − (x+ 2) and
thus

|f(x)− L| =
∣∣∣∣2x− 2

x+ 2
− 2

∣∣∣∣ =
6

|x+ 2|
= − 6

(x+ 2)
.

But x < X = −2− 6/ε implies − (x+ 2) > 6/ε, i.e.

− 6

(x+ 2)
< ε.

Hence |f(x)− L| < ε and we have verified the definition of

lim
x→−∞

2x− 2

x+ 2
= 2.

7. Find the value of

lim
x→+∞

2− x2

x2 + 2

and show your value satisfies the ε -X definition.

Solution Rough work For large x, whatever it’s sign,

2− x2

x2 + 2
‘looks like’

−x2

x2
= −1.

So we guess the limit is −1. Consider

|f(x)− L| =
∣∣∣∣2− x2x2 + 2

− (−1)

∣∣∣∣ =
4

|x2 + 2|
=

4

x2 + 2
.
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You could demand this is < ε i.e.

x >

(
−2 +

4

ε

)1/2

.

But this requires −2 + 4/ε > 0, i.e. ε < 2 and we don’t usually restrict
ε. Instead, bound |f(x)− L| from above by a ‘simpler’ function and
then demand the bound is < ε. For example,

4

x2 + 2
<

4

x2

so demand 4/x2 ≤ ε. And if you don’t like square roots of ε, require
x > 1 which implies x2 > x and thus 4/x2 ≤ 4/x. We need only then
demand 4/x < ε.

End of Rough work

Proof Let ε > 0 be given, choose X = max (1, 4/ε) and assume x > X.
For such x we have

|f(x)− L| =
4

x2 + 2
<

4

x2
<

4

x
since x > X ≥ 1

≤ 4

(4/ε)
since x > X ≥ 4/ε

= ε.

Therefore we have verified the ε -X definition of

lim
x→+∞

2− x2

x2 + 2
= −1.

8. Find the value of

lim
x→−∞

3x+ 3

x− 2
,

and show your value satisfies the ε -X definition.

Solution Rough Work For large x, whatever it’s sign,

3x+ 3

x− 2
‘looks like’

3x

x
= 3.
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So we guess the limit is −1. Consider

|f (x)− L| =
∣∣∣∣3x+ 3

x− 2
− 3

∣∣∣∣ =
9

|x− 2|
.

In the definition of limit as x → −∞ we need to find a negative X.
If x < X < 0 then x − 2 < 0 so |x− 2| = − (x− 2) . We need then
demand that

9

2− x
< ε.

End of Rough Work

Proof Let ε > 0 be given, choose X = min (0, 2− 9/ε) and assume
x < X. For such x we have

|f (x)− L| =
9

|x− 2|
=

9

2− x
since x < X ≤ 0

≤ ε since x < X ≤ 2− 9/ε.

Therefore we have verified the ε -X definition of

lim
x→−∞

3x+ 3

x− 2
= 3.

Note x − 2 < 0 will follow from x < 2 which, in turn, follows from
x < 2− 9/ε. Thus you might be tempted to choose X = 2− 9/ε. Yet,
as mentioned in the rough work we look for negative X and 2−9/ε < 0
only if ε < 9/2. As stated before we don’t restrict ε, hence our choice
of X = min (0, 2− 9/ε). End of Note

Extra questions for practice

9. Verify the ε -X definition of

lim
x→+∞

−2− x2

x2 − 2
= −1.

Solution Rough work Consider

|f(x)− L| = 4

|x2 − 2|
.
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If we assume x2 > 2 then |f(x)− L| = 4/(x2 − 2) and we need demand
this is < ε. This rearranges as x >

√
2 + 4/ε. If this holds then the

previous requirement x >
√

2 necessarily holds.

End of Rough work.

Proof Let ε > 0 be given, choose X =
√

2 + 4/ε and assume x > X.
For such x we have

|f(x)− L| =
4

|x2 − 2|
=

4

x2 − 2
since x > X ≥

√
2

<
4

X2 − 2
since x > X

= ε

by the definition of X. Therefore we have verified the ε -X definition
of

lim
x→+∞

−2− x2

x2 + 2
= −1.

Note it is not so easy to use the method of the previous question, and
bound |f(x)− L| from above by a simpler function. For example it is
not true to say

4

x2 − 2
≤ 4

x2
.

It is, though, true that
4

x2 − 2
≤ 5

x2

for x2 ≥ 10, or, if you don’t like square roots, x ≥ 4. I have chosen 5 on
the right hand side only since it is the smallest integer strictly larger
than 4. If x ≥ 4 then 5/x2 < 5/4x and we need demand this is < ε.

Alternative proof Let ε > 0 be given, choose X = max (4, 5/4ε) and
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assume x > X. For such x we have

|f(x)− L| =
4

x2 − 2
since x ≥ X ≥ 4 =⇒ x2 − 2 > 0

<
5

x2
since x ≥ X ≥ 4 >

√
10

<
5

4x
since x ≥ X ≥ 4

≤ 5

4X
≤ 5

4 (5/4ε)
= ε since x ≥ X ≥ 5/4ε.

End of Note

10. Find the value of

lim
x→−∞

−2− x2

x2 − 2
,

and show your value satisfies the ε -X definition.

Solution For large x

−2− x2

x2 − 2
‘looks like’

−x2

x2
= −1,

so we guess the limit is−1. Let ε > 0 be given, chooseX = −max (4, 5/4ε) =
min (−4,−5/4ε) and assume x < X. For such x we have

|f(x)− L| =
4

x2 − 2
since x ≤ X ≤ −4 =⇒ x2 − 2 > 0

<
5

x2
since x ≤ −4 =⇒ x2 ≥ 10

<
5

4 |x|
since x ≤ −4 =⇒ x2 ≥ 4 |x|

≤ 5

4 |X|
≤ 5

4 (5/4ε)
= ε since |x| ≥ |X| ≥ 5/4ε.

Hence we have verified the ε -X definition of

lim
x→−∞

−2− x2

x2 − 2
= −1.
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Aside I chose 4 in −max (4, 5/(4ε)) simply as the smallest integer
satisfying x2 > 10. You could choose

√
10 in its place which would lead

to the choice of X = −max
(√

10,
√

5/
(√

2ε
))

.
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